Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Sci Food Agric ; 101(6): 2201-2209, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32978783

RESUMO

BACKGROUND: The biotechnological potential of yeasts from nuts such as pistachio, not only for health applications but also for industry use, has been scarcely studied. Interest in the probiotic capability of yeasts has increased in the past years as well as their utilization as food or feed preservatives. Their capabilities as biocontrol against problematic (spoilage or toxigenic) microorganisms or as antioxidants have been revalued. As a result, both abilities would be desirable to develop a new potential probiotic microorganism which could be added to food or feed to improve their properties. RESULTS: Molecular techniques allowed the identification of a total of seven different species and 15 strains. A screening of the probiotic potential of these strains was carried out. It was found that 65% of the strains resisted the gastrointestinal conditions as well as presented a generation time of < 22 h. Additionally, some strains showed better kinetic parameters than Saccharomyces boulardii (positive control). Complementary tests were done to determine their auto-aggregation capacity, cell surface hydrophobicity, behaviour in a sequential simulated digestion, biofilm formation capability and carbon source assimilation. Finally, 67% and 13% of the studied yeasts showed biocontrol and antioxidant activities, respectively. CONCLUSIONS: Diutina rugosa 14 followed by Diutina rugosa 8 were the best wild yeast from Pistacia vera as potential probiotic and in carbon source utilization. However, Hanseniaspora guilliermondii 6 and Aureobasidium proteae 5 could be used to improve food or feed product preservation because of their notable biocontrol and antioxidant capabilities. © 2020 Society of Chemical Industry.


Assuntos
Nozes/microbiologia , Pistacia/microbiologia , Probióticos/isolamento & purificação , Leveduras/isolamento & purificação , Trato Gastrointestinal/microbiologia , Humanos , Filogenia , Probióticos/química , Probióticos/classificação , Leveduras/química , Leveduras/classificação , Leveduras/genética
2.
Food Funct ; 10(8): 4924-4931, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31342038

RESUMO

This work allowed the evaluation of the gastrointestinal resistance of five yeasts (Saccharomyces and non-Saccharomyces) in order to assess some biotechnological characteristics linked to the potential probiotics, using a dynamic gastrointestinal simulator (simgi®). The best results obtained were for strains Saccharomyces cerevisiae 3 and Hanseniaspora osmophila 1056. Having optimised the method, the yeasts were subsequently lyophilised, and the one that showed the least loss of viability, S. cerevisiae 3, was used in a freeze-dried form to obtain a new functional food. On the other hand, some characteristics of the product were compared with those of probiotic supplements and other commercial probiotic foods. The obtained functional product showed better parameters than the rest of the samples containing yeasts which, together with the great acceptance shown after the consumer tests, means that it can be presented as a possible commercial functional product.


Assuntos
Hanseniaspora/crescimento & desenvolvimento , Probióticos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Adolescente , Adulto , Meios de Cultura/química , Meios de Cultura/metabolismo , Feminino , Fermentação , Alimento Funcional/análise , Alimento Funcional/economia , Trato Gastrointestinal/microbiologia , Hanseniaspora/química , Hanseniaspora/metabolismo , Humanos , Microbiologia Industrial , Masculino , Viabilidade Microbiana , Pessoa de Meia-Idade , Probióticos/economia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adulto Jovem
3.
Food Microbiol ; 82: 218-230, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027777

RESUMO

Structure of lactic acid bacteria biota in ivy flowers, fresh bee-collected pollen (BCP), hive-stored bee bread, and honeybee gastrointestinal tract was investigated. Although a large microbial diversity characterized flowers and fresh BCP, most of lactic acid bacteria species disappeared throughout the bee bread maturation, giving way to Lactobacillus kunkeei and Fructobacillus fructosus to dominate long stored bee bread and honeybee crop. Adaptation of lactic acid bacteria was mainly related to species-specific, and, more in deep, to strain-specific features. Bee bread preservation seemed related to bacteria metabolites, produced especially by some L. kunkeei strains, which likely gave to lactic acid bacteria the capacity to outcompete other microbial groups. A protocol to ferment BCP was successfully set up, which included the mixed inoculum of selected L. kunkeei strains and Hanseniaspora uvarum AN8Y27B, almost emulating the spontaneous fermentation of bee bread. The strict relationship between lactic acid bacteria and yeasts during bee bread maturation was highlighted. The use of the selected starters increased the digestibility and bioavailability of nutrients and bioactive compounds naturally occurring in BCP. Our biotechnological protocol ensured a product microbiologically stable and safe. Conversely, raw BCP was more exposed to the uncontrolled growth of yeasts, moulds, and other bacterial groups.


Assuntos
Abelhas/microbiologia , Microbiologia de Alimentos , Pólen/metabolismo , Pólen/microbiologia , Própole/metabolismo , Animais , Anti-Infecciosos , Fermentação , Flores/microbiologia , Trato Gastrointestinal/microbiologia , Hanseniaspora/metabolismo , Hedera , Lactobacillales/classificação , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Interações Microbianas , Microbiota , Pólen/química , Especificidade da Espécie
4.
Appl Microbiol Biotechnol ; 103(5): 2339-2352, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656393

RESUMO

Several marine Debaryomyces hansenii strains have shown probiotic effects on aquatic animals, and D. hansenii-derived ß-glucans have recently provided immunostimulant effects on goat leukocytes. This study assessed the probiotic effects of live yeast D. hansenii CBS 8339 on newborn goats administered orally, and subsequently challenged in vitro with Escherichia coli. D. hansenii CBS 8339 demonstrated the capacity to survive gastrointestinal tract conditions (bile salts and acid pH tolerance) and adhere to goat intestine. Twelve Saanen × Nubian crossbred newborn goats (2.9 ± 0.47 kg) were fed with a controlled diet or D. hansenii (0.7 g/kg body weight per day)-supplemented milk for 30 days. Blood samples of newborn goats were taken at days 15 and 30, and peripheral blood leukocytes were isolated for bacterial challenge, and immunological and antioxidant analyses. Despite cell viability was higher in leukocytes of goat kids fed with the yeast supplement, protection against E. coli challenge was not significantly affected. On the other hand, at day 15, oral administration of D. hansenii enhanced respiratory burst and catalase activity and increased superoxide dismutase activity after challenge. In contrast, at day 30, administration of the yeast supplement increased peroxidase activity and enhanced nitric oxide production and catalase activity after challenge. Finally, the yeast-supplemented diet upregulated the expression of the receptor genes TLR (2, 4, 6), modulator genes Raf.1, Syk, and Myd88, transcription factor gene AP-1, and cytokine genes IL-1ß and TNF-α only at day 15 in leukocytes from unchallenged goat kids. These results demonstrated that a short time (15 days) of orally administering the probiotic D. hansenii CBS 8339 to newborn goats stimulated innate immune and antioxidant parameters and the expression of immune-related gene signaling pathways.


Assuntos
Animais Recém-Nascidos/microbiologia , Antioxidantes/metabolismo , Debaryomyces/metabolismo , Cabras/microbiologia , Imunidade Inata/imunologia , Probióticos/metabolismo , Animais , Catalase/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Leucócitos/citologia , Óxido Nítrico/metabolismo , Explosão Respiratória/fisiologia , Superóxido Dismutase/metabolismo , beta-Glucanas/metabolismo
5.
J Appl Microbiol ; 124(6): 1377-1392, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29464844

RESUMO

AIMS: The objective was to determine the effects of dietary substitution of fishmeal (FM) with live yeast and increasing water temperature on the diversity and composition of gut microbiota in rainbow trout. METHODS AND RESULTS: Fish were fed either FM or yeast (Saccharomyces cerevisiae) and reared in water temperatures of either 11°C (cold) or 18°C (warm) for 6 weeks. Luminal content and mucosa were collected from the distal gut and the load, diversity and species abundance of yeast and bacteria were analysed using agar plating, MALDI-TOF and rRNA gene amplicon sequencing. Yeast in the gut of fish fed FM were represented by S. cerevisiae, Rhodotorula spp. and Debaryomyces hansenii, while fish fed yeast contained 4-5 log higher CFU per g of yeast that were entirely represented by S. cerevisiae. For gut bacteria, sequencing of 16S rRNA gene amplicons using Illumina MiSeq showed lower bacterial diversity and abundance of lactic acid bacteria, especially Lactobacillus, in fish reared in warm rather than cold water. Fish fed yeast had similar bacterial diversity and lower abundance of Leuconostocaceae and Photobacterium compared with fish fed FM. CONCLUSIONS: Feeding live yeast mainly increased yeast load in the gut, while increased water temperature significantly altered the gut microbiota of rainbow trout in terms of bacterial diversity and abundance. SIGNIFICANCE AND IMPACT OF THE STUDY: Live yeast can replace 40% of FM without disrupting bacteria communities in the gut of rainbow trout, while increased water temperature due to seasonal fluctuations and/or climate change may result in a gut dysbiosis that may jeopardize the health of farmed fish.


Assuntos
Ração Animal/microbiologia , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Oncorhynchus mykiss/microbiologia , Saccharomyces cerevisiae/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae/genética , Temperatura , Água/química
6.
Microbiome ; 5(1): 107, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837002

RESUMO

BACKGROUND: The fungi in the gastrointestinal tract, the gut mycobiota, are now recognised as a significant part of the gut microbiota, and they may be important to human health. In contrast to the adult gut mycobiota, the establishment of the early gut mycobiota has never been described, and there is little knowledge about the fungal transfer from mother to offspring. METHODS: In a prospective cohort, we followed 298 pairs of healthy mothers and offspring from 36 weeks of gestation until 2 years of age (1516 samples) and explored the gut mycobiota in maternal and offspring samples. Half of the pregnant mothers were randomised into drinking probiotic milk during and after pregnancy. The probiotic bacteria included Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis subsp. lactis Bb-12 and Lactobacillus acidophilus La-5. We quantified the fungal abundance of all the samples using qPCR of the fungal internal transcribed spacer (ITS)1 segment, and we sequenced the 18S rRNA gene ITS1 region of 90 high-quantity samples using the MiSeq platform (Illumina). RESULTS: The gut mycobiota was detected in most of the mothers and the majority of the offspring. The offspring showed increased odds of having detectable faecal fungal DNA if the mother had detectable fungal DNA as well (OR = 1.54, p = 0.04). The fungal alpha diversity in the offspring gut increased from its lowest at 10 days after birth, which was the earliest sampling point. The fungal diversity and fungal species showed a succession towards the maternal mycobiota as the child aged, with Debaryomyces hansenii being the most abundant species during breast-feeding and Saccharomyces cerevisiae as the most abundant after weaning. Probiotic consumption increased the gut mycobiota abundance in pregnant mothers (p = 0.01). CONCLUSION: This study provides the first insight into the early fungal establishment and the succession of fungal species in the gut mycobiota. The results support the idea that the fungal host phenotype is transferred from mother to offspring. TRIAL REGISTRATION: Clinicaltrials.gov NCT00159523.


Assuntos
Fezes/microbiologia , Fungos/genética , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Micobioma , Probióticos/administração & dosagem , Adulto , Aleitamento Materno , Pré-Escolar , Estudos de Coortes , DNA Espaçador Ribossômico , Debaryomyces/genética , Debaryomyces/isolamento & purificação , Feminino , Fungos/classificação , Fungos/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Masculino , Mães , Gravidez , Estudos Prospectivos , RNA Ribossômico 16S , RNA Ribossômico 18S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Fatores de Tempo
7.
Child Obes ; 13(1): 78-84, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27007700

RESUMO

BACKGROUND: Differences in relative proportions of gut microbial communities in adults have been correlated with intestinal diseases and obesity. In this study we evaluated the gut microbiota biodiversity, both bacterial and fungal, in obese and normal-weight school-aged children. METHODS: We studied 28 obese (mean age 10.03 ± 0.68) and 33 age- and sex-matched normal-weight children. BMI z-scores were calculated, and the obesity condition was defined according to the WHO criteria. Fecal samples were analyzed by 16S rRNA amplification followed by denaturing gradient gel electrophoresis (DGGE) analysis and sequencing. Real-time polymerase chain reaction (PCR) was performed to quantify the most representative microbial species and genera. RESULTS: DGGE profiles showed high bacterial biodiversity without significant correlations with BMI z-score groups. Compared to bacterial profiles, we observed lower richness in yeast species. Sequence of the most representative bands gave back Eubacterium rectale, Saccharomyces cerevisiae, Candida albicans, and C. glabrata as present in all samples. Debaryomyces hansenii was present only in two obese children. Obese children revealed a significantly lower abundance in Akkermansia muciniphyla, Faecalibacterium prausnitzii, Bacteroides/Prevotella group, Candida spp., and Saccharomyces spp. (P = 0.031, P = 0.044, P = 0.003, P = 0.047, and P = 0.034, respectively). CONCLUSION: Taking into account the complexity of obesity, our data suggest that differences in relative abundance of some core microbial species, preexisting or diet driven, could actively be part of its etiology. This study improved our knowledge about the fungal population in the pediatric school-age population and highlighted the need to consider the influence of cross-kingdom relationships.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Trato Gastrointestinal/microbiologia , Obesidade Infantil/microbiologia , Bactérias/classificação , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Fezes/microbiologia , Comportamento Alimentar , Fungos/classificação , Microbioma Gastrointestinal/fisiologia , Humanos , Obesidade Infantil/etiologia , RNA Ribossômico 16S/análise , Reação em Cadeia da Polimerase em Tempo Real
8.
Food Microbiol ; 53(Pt A): 30-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611167

RESUMO

A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability.


Assuntos
Fenômenos Fisiológicos Bacterianos , Queijo/microbiologia , Trato Gastrointestinal/microbiologia , Leveduras/fisiologia , Animais , Brevibacterium/isolamento & purificação , Brevibacterium/fisiologia , Simulação por Computador , Corynebacterium/isolamento & purificação , Corynebacterium/fisiologia , Digestão , Trato Gastrointestinal/química , Geotrichum/isolamento & purificação , Geotrichum/fisiologia , Hafnia alvei/isolamento & purificação , Hafnia alvei/metabolismo , Técnicas In Vitro , Lactococcus lactis/isolamento & purificação , Lactococcus lactis/fisiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Reprodutibilidade dos Testes , Saccharomycetales/isolamento & purificação , Saccharomycetales/fisiologia , Leveduras/classificação
9.
Mar Biotechnol (NY) ; 8(3): 246-59, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16532366

RESUMO

Viable cell counts and/or in situ hybridization were used to determine whether the probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansenii AY1 can colonize the gastrointestinal tract of the South African abalone Haliotis midae. The number of culturable probiotic cells reisolated from H. midae fed probiotic-supplemented feed for 3 weeks ranged from 10(6) to 10(7) cfu/g gut material. A significant decrease (P < 0.05) in probiont numbers 2 days after feeding the probiotic-supplemented feed had been halted correlated with a significant decrease (P < 0.05) in intestinal protease and amylase activity. There was a positive correlation between Cryptococcus sp. SS1 and amylase activity (r2= 0.681) and V. midae SY9.8 and protease activity (r2= 0.711) in the H. midae intestine. Although culturable probionts were isolated from abalone that had not been fed probiotic-supplemented feed for a 2-week period, the drop in the number of probiotic cells colonizing the abalone digestive tract 2 days after feeding with the probiotic-supplemented feed had been halted indicates that farmed abalone should be fed probiotic-supplemented feed at least every second day for maximum benefit.


Assuntos
Ascomicetos/fisiologia , Cryptococcus/fisiologia , Moluscos/microbiologia , Vibrio/fisiologia , Ração Animal/microbiologia , Animais , Aquicultura , Trato Gastrointestinal/microbiologia , Probióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA